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Abstract. The phase diagram and the thermodynamics of the axial decorated Ising model 
on a square lattice with m-dimensional bond spins are studied for the m = 1 (Ising), m = 2 
(XU), m = 3 (Heisenberg) and m = m cases. Competing interactions between the site and 
decorating bond spins have been considered. The expressions for the partition function, 
the thermodynamics and the pair correlation functions of the decorated king chain have 
been analytically obtained. The effect of the dimensionality of the decorating bond spin 
on the thermodynamic behaviour of both models is analysed. 

1. Introduction 

There is currently great interest in the study of Ising systems with competing interactions. 
A competing interaction can be introduced, by decorating the lattice with bond spins, 
that simulates an effective interaction between the site Ising spins that is temperature 
and magnetic field dependent. For example, a class of decorated spin-f Ising models 
has been considered by Huse et a1 (1981) in an attempt to study the axial next-nearest- 
neighbour Ising or ANNNI model. 

This paper is devoted to the study of the phase diagram of the axial decorated 
Ising model on a square lattice where the decorating bond spin is a general m- 
dimensional vector spin with magnitude A (see figure 1( a)). The decoration-iteration 
transformation has often been used to investigate the relations between the partition 
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Figure 1. ( a )  Axial decorated Ising model on a square lattice. 0, Ising spin a; f, 
m-dimensional decorating bond spin S. ( b )  Scheme of the model exchange interactions 
( J , , J o > O  and J 2 < O ) .  
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functions .for distinct lattice models. We refer to Syozi (1972) as a general reference. 
Several plane Ising lattices decorated with higher Ising spins have been studied by 
Yamada (1969) pointing out the existence of three phase-transition temperatures in 
both isotropic and axially decorated square lattice models. By higher Ising spins 
Yamada (1969) means a spin variable that can take l ( l>2 )  discrete values. In the 
present model the decorating spin is a m-dimensional vector spin varying continuously 
that reduces to particular cases for m = 1 (Ising), m = 2 (XU) and m = 3 (Heisenberg). 
The isotropic version of the Ising model on a square lattice with the present kind of 
decoration has recently been considered by Horiguchi and GonGalves (1983) showing 
the possibility of the existence of three phase-transition temperatures for m > 1. In 
the present paper we consider the anisotropic or axial decorated king model on a 
square lattice which has three phase-transition temperatures even for m = 1 and can 
be considered the simplest version of the ANNNI mock model generalised for vector 
spins. This model for the particular case m = 1 has already been studied by Yamada 
(1969) and Syozi (1968). The phase diagram shows that the range of values of the 
competing parameters for the existence of the three phase-transition point increases 
with the increase of the dimensionality m of the decorating spin. We also study the 
effect of the dimensionality of the decorating spin on the critical behaviour of the 
system especially in the limiting case where m + 00. 

Our square lattice model can be regarded as a set of linear decorated Ising chains 
(rows) interacting with their first neighbour’s chains through a ferromagnetic exchange 
interaction (constant coupling Jo > 0). Within each chain the nearest-neighbour Ising 
site spins couple through an antiferromagnetic exchange interaction (coupling constant 
J2 < 0) while interacting with the vector bond spins through a ferromagnetic interaction 
(coupling constant J ,  > 0). A sketch of these interactions is shown in figure l (b) .  

As the bond vector spins do not interact with each other they can be traced out in 
the partition function yieldinga temperature dependent effective ferromagnetic interac- 
tion between the Ising site spins competing with the antiferromagnetic one. Actually 
our model is equivalent to an anisotropic square lattice Ising model with a temperature 
dependent effective interaction in the decorated direction and a constant ferromagnetic 
interaction in the off-decorated direction. 

In § 2 we review the thermodynamic and magnetic properties of an Ising chain 
decorated with m-dimensional vector spins under an external magnetic field by evaluat- 
ing exactly the analytic partition function, the effective interaction, the correlation 
functions and the thermodynamic functions (internal energy, entropy and specific heat). 

In § 3 we present the axial decorated Ising model on a square lattice and discuss 
its phase diagram in the T against a = ( - J 2 / h J l )  plane whereas the phase transition 
lines a,( T,) are calculated exactly and explicitly. The specific heat and internal energy 
are also exactly calculated and shown as functions of the temperature for several values 
of m and a. It is shown that within the range of values of a for which the phase 
diagram has three transition temperatures there appears an apparent first-order phase 
transition evidenced by a jump in the specific heat. 

In 9 4  we study both one- and two-dimensional models in the limit where the 
dimensionality of the decorated spins goes to infinity. Finally in § 5 we summarise 
our work by presenting our conclusions. 

2. Decorated Ising chain 

We consider an Ising chain of N spins (+ decorated with ( N  - 1) m-dimensional vector 
bond spins with free boundary conditions and submitted to an external uniform magnetic 
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field H. The Ising spins interact with the vector bond spins through a ferromagnetic 
interaction (coupling constant J, > 0) and with the nearest-neighbour Ising site spins 
through an antiferromagnetic interaction (coupling constant J2 < 0). The vector bond 
spins do not interact with each other. 

The Hamiltonian of the system is then 

where SY( v = 1,2 , .  . . , m )  are the Cartesian components of the m-dimensional vector 
spin Si of magnitude A, and H is applied in the Y = 1 direction. 

2.1. The partition function and efectiue interaction 

The normalised partition function for the Hamiltonian H is given by 

where the summation is taken over all the Ising spin configurations, p = (KBT)-l and 

z1dSS(A2-Sf)@{S}.  
i = l  

Taking @ { S }  = 1 we get for the denominator of (2), 

(3) 

where T(x) is the gamma function. 

Stanley (1969) obtaining 
To evaluate the trace in the vector bond spin variables we use the approach of 

zN( m )  = A:-'( 1 + (a,l[exp(iKal)TN-' exp($Kc+~)]lCT~) (5) 
O l U N  

where 

An = 2 T (  n + 1) 

n = ( m / 2 )  - 1, SI,,, is the Kronecker delta function and T is the transfer matrix whose 
matrix elements are given by 

(alTla') = $,,(U, a') exp[K,aa '+fK(a+ a')] 

$n(a, a') = u - " l n ( u )  (8) 

(7) 

where 

I,(u) being the modified Bessel function of the first kind of order n, U = 
AK,(a+u '+K/K,) ,  K,=/3J1, K2=PJ2  and K = P H .  

We make use of the decoration-iteration (Fisher 1959) for the transfer matrix to 
obtain 

(a(T( a') = f exp[ Ke8au' + iL( a + a')] (9) 
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where 

f =  [+,(I ,  wn(-l, -w:(-L w4. (12) 

Therefore, the problem is now reduced to one of obtaining the partition function 
of an Ising chain with an effective coupling P-'Kea between spins and submitted to 
a modified magnetic field p-'L acting on all the spins, except on the border ones 
where the field is actually P-'[L-ln &,(l, l)/+,,(-l,  -1 ) ]  in the case of free ends 
chain. Moreover the effective coupling and the modified magnetic field are both 
temperature and magnetic field dependent through the functions +,,(U, U'). 

After straightforward calculations we obtain the partition function for the free ends 
chain, that is 

(13)  

(14) 

(15) 

(16) 

z N ( m ) = A n  N - l  A +  N-1 (1+61,,)N-1[A++A-(A-/A+)N-1] 

where A, are the transfer matrix eigenvalues given by 

and 
A, =fexp(K,,){cosh L* [sinh2 L + e ~ p ( - 4 K , ~ ) ] ' ' ~ )  

A ,  = [cosh K * (1 - 
A = [ 1 +exp(4KeE) sinh' L1-I. 

sinh K * 

In the H + 0 limit the partition function reduces to the simple expression 

2.2. Correlation functions 

In this subsection we obtain the exact expressions for the correlation functions (Upl), 
( s k  SI)  and (U$:), respectively the site-site, the bond-bond and the site-bond spin 
correlation functions. 

The site-site spin correlation function (U@,) can be easily obtained from 

The general expression for this correlation function in the case of a free ends chain 
can be obtained straightforwardly giving an enormous expressiont. We limit ourselves 
to the bulk limit, i.e. the limit where the two spins to be correlated are at a finite 
distance from each other but infinitely far from the boundary. In this limit the 
correlation function for the free ends chain equals the one for the ring chain, i.e. 

t See, for example, McCoy and Wu (1973, p 42) 
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The zero-field correlation function ( A  = 1)  is 

( U k a l ) ' =  (tanh K:E)'-~ (20) 

KPff = K2+1ln[$,(l, 1)/$, , ( -1 ,  111. (21) 

where 

The bond-bond correlation function (Sk - S,) can be evaluated from 

Tracing out the vector bond spin variables one obtains 

where 
(al?la')= ~ $ , + ~ ( a ,  a') exp[K,aa '+~K(a+a ' ) ] .  

By using the transformation mentioned above (see (9)-(12)) one obtains for the bulk 
limit that 

where 

B ,  = 2[ 1 * AA, + ( 1  - 1 - AI)'"] (25) 

and X, and AI  are given by (14) and (16) respectively where we replaced $,,(a, a') by 
U $ , + ~ ( U ,  a'). In the zero-field limit ( A  = 1 ,  AI = 0), the correlation function is 

and ( a k ~ f ) o  is the site-site Ising correlation function given by (20). 

previous one, i.e. from the definition 
The site-bond correlation function ( ( T k s : )  can be obtained in the same way as the 

and tracing out the vector bond spin variables getting 

X ( a k  lakT'-k?TN-k exp(;Ku,)  la^) 
where T and ? are given by (7) and (23) respectively. 
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In the bulk limit this correlation function is 

and in the zero-field limit ( A  = 1, A I  = 0) it reduces to 

The site-site correlation function ((+k(T[)' = 1 when T = 0 and for T # 0 and ( 1  - k )  + 

CO we get (up[)'+ 0 for all values of the spin dimensionality, as expected for one- 
dimensional models. Nevertheless both the site-bond ( UkS:)' and the bond-bond 
(S ,  Sf)' are zero for T = 0 and a > 1, a being the competing parameter? a = -J2/AJ1. 
Therefore at T = 0 and for strong antiferromagnetic interaction J2 between the Ising 
spins, the decorating vector spins remain uncorrelated while the Ising spins are ordered 
antiferromagnetically. On the other hand, for a < 1 the ground-state configuration 
shows that both Ising and vector spin systems are ordered ferromagnetically. 

The short-range order can be analysed by looking at the behaviour of the site-spin 
pair correlation function. In figure 2 we show the behaviour of the temperature T,, 
where the nearest-neighbour correlation function changes signal, against the competing 
parameter a = -J2/AJ1, for three values of the spin dimensionality. We note that the 
ferromagnetic short-range order decreases monotonically when the decorating vector 
spin dimensionality increases for a given temperature, as expected (Stanley 1971). 

E 

Figure 2. Short-range order behaviour. Temperature dependence of the signal changing 
of the pair correlation function against the competing parameter a = -J2/AJl  for m = 1 ,  2 
and 3 ( I D  model). 

t We have assumed that the magnitude of the vector spin A is equal to m"* in order to renormalise the 
exchange integrals with respect to the vector spin dimensionality (Stanley 1969). 
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2.3. The thermodynamic functions 

The thermodynamic functions of the system can be obtained exactly from the analytical 
expression of the normalised free energy (free energy per spin) defined by 

where A, and A, are given by equations (6) and (14) respectively. 
The internal energy U ( H ,  p ) ,  the entropy S ( H ,  p )  and the specific heat CH(p) can 

be evaluated straightforwardly from the usual thermodynamic relations U = a(pF)/ap, 
S = KBP( U - F) and CH = -KBp2(aU/ap)H respectively. We omit the explicit 
expressions of U, S and CH for the non-zero magnetic field case because they are too 
large for analytical purposes. Nevertheless, in the zero-field case we have 

U = 4J2 - [ 1 + exp( -2KZff)]-IKLff (33) 

S/KB = f In[ 1 -I- exp(2K&)] -PK:fi[ 1 + exp( -2K'&)]-' +isl,,, In 2 (34) 

C / K B  = pZ{KEff +2(K:,J2[ 1 +exp(2K:ff)]-1}[l +exp(-2K&)]" (35) 
where 

KZff = pJz+i In G,(2AK1) 
KLff = a K zff/dp = J2 + A J 1  F, (2AK1) 

(36) 

(37) 

G,(x) = 2"r(n + 1)x-"l,(x) 

and F,,(x) is given by (27). 

0 1 2 3 0 

(39) 

0 1 2 3 L 
t 

Figure 3. Normalised internal energy U,,, = U,,,/4J, 
as a function of the reduced temperature f = K, T /  J ,  
for ( a )  king case ( m  = 1 )  for a =0.7,  0.8, 0.9, 1.0 
and 1 . 1 ,  ( b )  X Y  case ( m = 2 )  for a=0.7,  0.8, 0.9, 
1.0 and 2.0, ( c )  Heisenberg case ( m  = 3 )  for a = 0.7, 
0.8, 0.9, 1.0 and 2.0 ( I D  model). 
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The temperature dependence of the normalised internal energy fi is indicated in 
figure 3 for several values of the competing parameter a and for each case where the 
decorating vector spins are Ising (m = l ) ,  planar ( m  = 2) or Heisenberg ( m  = 3) spins. 
In the low-temperature limit we notice a qualitative interesting behaviour of the internal 
energy patterns: an abrupt increase from the ground-state value for a < 1 produced 
by the onset of the correlation between the decorating vector spins and the Ising spins. 
For a > 1 and T + 0 K the vector spins remain uncorrelated as mentioned above. 

The temperature behaviour of the entropy per spin is shown in figure 4. Figure 
4(a) shows the Ising case unnormalised entropy for a = 0 (pure ferromagnetic Ising 
chain) and a = 0.8, 1.0 and 1.2. For a < 1 ,  S I / K B  = 0 at T = 0 as expected. However 
for a > 1 the entropy has a non-zero constant value at T = 0. For cy = 1,  Sl/KB = 4 In 3 
corresponding to the threefold degeneracy of the ground state when J1 = I J21. For a > 1 ,  
S , / K B  = 4 In 2 since the decorated spins are not correlated with the site spins as pointed 
out in 0 2.2. Figures 4( b )  and 4( c) show the m = 2 and 3 cases respectively. Note that 
for m > 1 the entropy diverges logarithmically to -a at low temperatures for cy < 1,  
diverging faster the larger m is since the ‘classical’ decorating bond spins are correlated 
with the Ising system. On the other hand, for a > 1 and T = 0 the bond vector spins 
are not correlated and the entropy is the one for the Ising system only, since we have 
normalised the partition function with respect to the classical spin degrees of freedom. 

In figure 5 we present the specific heat at zero field for the cases m = 1, 2 and 3 
and for several values of the competing parameter a. For the Ising case ( m  = 1 )  and 
for a - 1 the specific heat shows two maxima, a sharp one at low temperature that 
collapses at T -+ 0 when a + 1 and a broad one that is smoothly dependent on a. The 
sharp maximum is associated with the short-range ferromagnetic order induced by the 
decorating bond spins while the broad one is due to the direct antiferromagnetic Ising 
coupling. For m > 2 cases the two maxima behaviour occurs only for cy < 1, since the 

0 6 -  1 0  

0 0 2  0 4  0 6  08 1 0  
t 

-0 4 

-0 8 
// I 

- 2  0 
0 0 2  9 4  06 0 8  1 

t 
3 

Figure 4. Entropy S, , , /K,  as a function of the 
reduced temperature t = K , T / J ,  for ( a )  Ising case 
( m  = 1 ,  unnormalised) for a = 0, 0.8, 1.0 and 1.2, ( b )  
X Y  case ( m  = 2 )  for a =0,  0.5, 0.8, 1.0 and 2.0, (c) 

0 0 2  0 4  0 6  08 1 0  Heisenberg case ( m  = 3)  for a = 0, 0.5, 0.8, 1.0 and 

-1 6 

-2 .o 
$ - I Z L  t 2.0 ( I D  model). 
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1.21 1 

Figure 5. Specific heat C , / K ,  as a function of the 
reduced temperature t = K , T / J ,  for (a) Ising case 
( m = l ) ,  ( b )  XY case ( m = 2 )  and ( c )  Heisenberg 
case(m=3),allforcr=0,0.8,l.Oand1.2(1~model). 

bond spin becomes more loosely correlated as a consequence of its higher dimensional- 
ity. Note that at T = 0 ,  C/KB goes at (2n+1)/4 due to the classical nature of the 
decorating bond-vector spins. As in the Ising case the sharp maximum collapses at 
T+O when a+1, for m = 2 ,  3 ,..., cases. 

3. Axial decorated Ising model on a square lattice 

In this section we extend the decorated chain model discussed in the previous section 
to the case of an Ising model on a square lattice decorated with m-dimensional vector 
spins in one direction (axial decoration) as indicated in figure l (a) .  We assume toroidal 
boundary conditions. 

The Hamiltonian of this model can be written as 

where Jo, J ,  and J2 are the interaction coupling constants as indicated in figure l ( b ) ,  
U: denotes the Ising spin variables of the j th  column and ith row site and S)' label 
the 7th Cartesian component of the vector bond spin at the ith bond of the j th  column. 

3.1. The partition function 

The normalised partition function of this model can be partially evaluated by tracing 
out the vector spin variables and using the decoration-iteration transformation indi- 
cated in 3 2. It follows that 
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where KO = p J o ,  KZff is given by (36) and 

n = ( m / 2 )  - 1. 
2"n!(2hK1)" 

The partition function given by (41) is the Onsager partition function (see, for 
example, McCoy and Wu 1973) multiplied by the factorfy2. Note thatf, is temperature 
dependent through K 1  = p J 1 .  Therefore the free energy per spin variable has an extra 
term equal to lnf , (  T ) .  Nevertheless the transition temperatures are not affected since 
f,( T )  is an analytical function of T Therefore the transition temperatures are given 
by the solutions of the well known transcendental equation 

sinh(2K&) sinh(2Ko) = *l. (43) 

The phase diagram in the plane T x a, a being the competing parameter - J 2 / A J 1 ,  
can be obtained analytically from (43), i.e. 

Gfl(x)(cosh(6x)* 1) 
(44) ) X ( sinh(8x) 

a =-ln 

where x =2AJ1/KBT,  6 = J o / h J ,  and G,(x) is given by (39). In figure 6 we illustrate 
the phase boundaries of the present model in the T - a  diagram, for the particular case 
when 6 = 1 and for Ising ( m  = l) ,  X Y  ( m  = 2) and Heisenberg (rn = 3) decorating 
spins. For all vector spin dimensionalities the system has three phases meeting at the 
point T = 0, a = 1: the ferromagnetic, the paramagnetic and the mixed phase (para- 
metamagnetic). In the ferromagnetic phase both Ising and vector spins are correlated 
ferromagnetically. In the mixed phase the Ising spins are correlated antiferromagneti- 
cally while the bond vector spins are uncorrelated. Therefore the mixed para-metamag- 
netic phase at T = 0 ( a  + 1) can be described as a sequence of up and down (t.lt3.tL . . .) 
columns of Ising spins (metamagnetic) while the bond vector spins are uncorrelated 
(paramagnetic). In that case the ground state is infinitely degenerated. For a i 1 there 
is a three phase-transition region that increases with the vector spin dimensionality m, 
for all values of m. The phase diagram of the isotropic decorated model is shown in 

0 0 5  1.0 1.5 
a 

Figure 6. Phase diagram in the plane T x  CI for the anisotropic decorated square lattice 
k i n g  model for the m = 1 (-1, m = 2 (- - - )  and m = 3 (- -1 cases. 
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figure 7.  This phase diagram can easily be obtained by solving the transcendental 
equation sinh2(2K$) = 1. It shows the same features of the diagram of the present 
model except for the Ising type decoration ( m  = 1) in which there is no three phase- 
transition temperature region as obtained by other authors (Yamada 1969, Horiguchi 
and Gongalves 1983). Both models have the same critical exponents of the two- 
dimensional Ising model. However for CY 4 1 and as m increases the borderlines 
between the paramagnetic and the ferromagnetic phases and the paramagnetic and 
the mixed phases seems to collapse to an apparent first-order transition line. This fact 
is evidenced by the behaviour of the internal energy and the specific heat. 

The internal energy and the specific heat can be obtained with the help of the 
Onsager solution (Onsager 1944). The internal energy U @ )  and the specific heat CH 
are given by the usual thermodynamic relations U = a ( p F ) / a p  and C ,  = 
- K B P ’ ( ~ U / ~ P ) H  respectively where F is the Helmholtz free energy per spin given by 

where Amax is the largest eigenvalue of the transfer matrix of Onsager’s solution 
for an Ising model on a square lattice with exchange interactions J8ff and Jo in the x 
and the y directions respectively. 

We have from Onsager (1944) that 

In A,,, =; ln12 sinh(2Ko)I cosh-’ n(p, w )  dw 

n(p, w )  being given by 

n(p, w )  = cosh(2K8,) cosh(2K*) -sinh(2K$) sinh(2K*) cos w (47) 

where 

K *  = ln(coth KO). (48) 

20<l P I 

0 0 5  1 0  1.5 
U 

Figure 7. Phase diagram in the plane T x a for the isotropic decorated square lattice Ising 
model for the m = 1 (-), m = 2 (- - -) and m = 3 (- . -) cases. 
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Therefore the internal energy and the specific heat can be evaluated straightfor- 
wardly giving 

- - K i  cosech’ 2K0+4p2KEff 
c 

KB 
_- 

where 

n’(p, U )  = (a /ap)n(p,  U )  = 2[(Ksff - K‘* cos W )  sinh(2Kzff) cosh(2K*) 

+ (K’* - KLff cos w )  sinh(2K*) cosh(2Kzff)] (51) 

sl”(p, W )  = (a2/ap2)n(p,  w )  = 2( K& - K”* cos U )  sinh(2Kzff) cosh(2K*) 

+2(K”*- KEff cos w )  sinh(2K*) sinh(2Kgff) 

+4(K$+ K‘*2-2K,fiK’* COS w )  cosh(2K:e) cosh(2K*) 

+4[2K‘*KLff - (KLi+ K’*2) cos w ]  sinh(2K$) sinh(2K*) ( 5 2 )  

( 5 3 )  

K’* =aK*/ap = -2Jo/sinh(4Ko) 

a2K*/ap2 = 4&(1 +sinh2 2Ko)/sinh (4K0) K”* = 

and where K&, KLff and K:, are given by (36)-(38) respectively. 
The integrals in (49) and (50) can be evaluated numerically and we can plot U 

and CIK,  against KBT/J1 for any values of a, 6 and m. In figure 8 we show the 
specific heat for m = 1, 2 and 3 and for a = 1 (6 = 1). We note that there exist three 
transition temperatures (a d l ) ,  T,, T2 and T3 corresponding to the ferro+para+ 
mixed + paramagnetic transitions. As T + 0, C/ KB + a(2n + l), as happens in the 
one-dimensional case. In figure 8 ( d )  we show TI and T3 for a = 0.75 (m = 3 case). 
We call the reader’s attention to the scale of this latter figure. For a + 1 the distance 
between these latter peaks tends exponentially to zero, simulating a first-order transition 
but actually indicating that the paramagnetic phase reaches the ground state exactly 
at the point T = 0 ,  a = 1. 

4. Infinite dimensionality limit ( m  + CO) 

In this section we study the one-dimensional and the square lattice models for the 
infinite limit of the bond vector decorating spin dimensionality. In both models, the 
partition function and the thermodynamic functions have been obtained in the previous 
sections as a function of the effective exchange interaction given by (36)  where the 
dimensionality dependence appears through the G,,(2AKl) functions. In the m + 03 

limit we get a very simple and close expression for the effective interaction, i.e. 

K2ff = m-m lim K:ff = K 2 +  K :  (54) 

as shown in the appendix. 
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-0 2 

4 0  

30 

g20 
\ c 

1 0  

I 0 
0 4  07 1 0  1 3  1 6  1 9  

0 2 6 4 3  0 2 6 4 5  0 26LB 0 2  
t 

50 

Figure 8. Specific heat C,/ K, as a function of the reducted temperature t = K, T/ I ,  for 
(a)  king case ( m  = 1 )  for a = 0.83, ( b )  XY case ( m  = 2) for a = 0.655, (c) Heisenberg case 
( m  = 3) for a =0.57 and ( d )  Heisenberg case for a = 0.75 (anisotropic 2D model). 

The internal energy, the entropy and the specific heat for the one-dimensional case 
can be evaluated by substituting (54) in (33)-(35) respectively, resulting in 

( 5 5 )  
- 1  

U, = -1 - 2( 2 - 1) [ 1 + exp( -+)I 
%-I -21n [ exp ( --+- ’,” i2) + 1  ] + (: --- :2)[l+exp($--$)]-’ (56)  
KB 

1+exp(2/x2-2G/x) (2/x - E)*  )[ l+exp(:-+)]-l (57) 

where x = J , /  K B T  and E is equal to - J2/  J ,  . The temperature dependence behaviour 
of these functions is shown in figure 9 for several values of E. We focus our attention 
on the behaviour of the system close to the temperature where the effective interaction 
changes its signal, i.e. where the effective interaction changes from ferromagnetic to 
antiferromagnetic. This ‘critical’ temperature is given by KBTc/J1 = 1/E. At this tem- 
perature there is a maximum in the specific heat that becomes sharper and higher as 
G increases, as shown in figure 9 ( c )  for several values of 5. 

This phase diagram T x E for the anisotropically decorated square lattice model 
can be obtained analytically by substituting (54) in (44) giving 

( 5 8 )  5 = K, * (1/2K1) ln(coth SKI) 
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Figure 9. Thermodynamic functions of the m + 

limit case. ( a )  Internal energy U=X f for a =2,  3, 
4 and 5 ,  ( b )  entropy S,/ K ,  x I for a = 0, 1 , 2 , 3  and 
5 and ( c )  specific heat C,/ K ,  x f for a = 2 , 3 , 4  and 
5 ( I D  model, f = K,T/J,) .  

where 8 = KO/ K ,  . For the isotropic case, the phase diagram is given by using (44) in 
the equation sinh 2Keff = * 1, that is 

ci = K ,  + ( 1/2KI) l n ( a *  1). (59 )  

Both diagrams are shown in figure 10. We note that the ferromagnetic phase is 
stable at T = 0 for every finite value of E. For the isotropic case and for G > a, there 
are three transition temperature points, where a, = 1.326 . . . is given by Keff = K ,  = 
0.44..  . . For the anisotropic case a, can be obtained numerically by solving the 
transcendental equation dci/dK, = 0. 

PM 

0 1 0  1327 6866 2 0 3 0  
a 
- 

Figure 10. Phase diagram in the plane T x  ti for the anisotropic (-) and the isotropic 
(- - -) decorated square lattice in the m + m limit. 
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The internal energy and the specific heat for the anisotropic case are given by 
(49)-(53) taking Kes = K Z  = K:+ K 2 .  In figure 11 we show the temperature behaviour 
of the internal energy and the specific heat for some value of 6 in the three temperature 
interval and for b= 1. 

-2 0 

5. Summary and conclusions 

0 5  10 1 5  2 0  2 5  

We have studied the phase diagram and the thermodynamics of the one-dimensional 
and the square lattice Ising model decorated with m-dimensional vector spins. We 
have drawn attention to two aspects, namely the local frustration induced by the 
competing interaction between the bond vector decorating spins and the Ising spins, 
and the effect of the bond vector spin dimensionality on the thermodynamic properties 
of both models. It is well known that spin decorating is equivalent to an effective 
interaction that is temperature and external field dependent (Fisher 1959, Syozi 1972). 

Therefore, if there is competition between the bond vector-Ising spin and the Ising 
spin-Ising spin interactions, the effective temperature and field dependent interaction 
could have its character changed from ferro- to antiferromagnetic and vice versa, as 
in the present model. This is evidenced by the behaviour of the pair correlation function 
for the one-dimensional model. At T = 0 the ordered phase changes with the competing 
parameter CK = - J 2 / f i J 1 .  For CK > 1 the Ising spins order antiferromagnetically while 
the bond vector remains uncorrelated and for a < 1 all the spins, including the 
decorating ones, order ferromagnetically. In figure 2 we have shown that the ferromag- 
netic short-range order decreases monotonically with the decorating spin dimensional- 
ity for a given temperature. We note that the thermodynamic properties (internal 
energy, entropy and specific heat) of both models have a qualitatively distinct physical 
behaviour if the decorating vector spin is an Ising spin ( m  = 1 case) or a ‘classical’ 
one ( m  > 1 cases) and are strongly affected by the competing interaction, especially 
for CK - 1, due to the onset of the correlation between the decorating vector spins and 
the Ising spins. These features can be seen in figures 3-5 and 8-9 for the one- 
dimensional and square lattice models, respectively. 

The phase diagram T x CK for the anisotropic square lattice decorated Ising model, 
i.e. a square lattice Ising model with decorating bond spins in one direction only, has 
been obtained analytically for a general dimension m. In figure 6 one can see the 
existence of three distinct phases meeting at the point T = 0, CK = 1, the ferro-, the para- 
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and the mixed or para-metamagnetic phases. In the mixed phase at T=O the Ising 
spins are antiferromagnetically correlated while the decorating spins are uncorrelated. 
However as soon as the temperature becomes finite the Ising spin flip excitation will 
be dependent on decorating neighbouring vector spins correlation. For (Y < 1 there is 
a three-transition temperature region characteristic of the decorated models (Syozi 
1972) that increases with the spin dimensionality. We note that the boraerlines between 
the para-ferromagnetic phases and paramagnetic-mixed phases seems to collapse to 
an apparent first-order transition line. This fact is evidenced by the behaviour of the 
internal energy and specific heat. However one can show analytically that actually 
both lines meet at the point T = 0, a = 0 as pointed out in figure 8 ( d ) .  

Finally we analyse both models in the m + a3 limit. First of all we draw the reader’s 
attention to the m + M limit of the effective interaction expression that has a very close 
and simple form, i.e. the effective interaction is just proportional to the inverse of the 
square temperature. For the one-dimensional system there is an abrupt change in the 
behaviour of the thermodynamic properties at temperatures close to the temperature 
where the effective interaction changes signal. There is a maximum in the specific heat- 
that becomes sharper and higher as E = 1 J21/J1 increases; see figure 9( c). For the square 
lattice model we get analytically the phase diagrams for both isotropic and anisotropic 
cases. We note that the ferromagnetic phase is stable at T = 0 for any finite value of 5. 
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Appendix. Effective exchange interaction in the m + 00 limit 

The effective exchange interaction is given by (36), where n = i m  - 1 and A = f i  in 
order to renormalise the exchange integrals with respect to the vector spin dimensional- 
ity (Stanley 1969). We have that 

lim K:ff = K 2 + i  lim In 
m+m m+m 

with x = 2AK,. To evaluate the limit we use the expansion of the modified Bessel 
function of first kind (Dwight 1961) 

Therefore 

K:&= K 2 + i  lim In +. . .) 
m-m 

+. . .) 
+. . .) 

( 2K: 22(n+l)K:  
= K2+i  lim In 1 +-+ 

n-m 1 l x 2 ( n + 2 )  

= K2+41n 1+-+-+- ( 2 ~ :  ( 2 ~ : ) ~  ( 2 ~ : ) 3  

1 2! 3! 

= K 2 + i  In exp(2K:) = Kz+ K :  = K z .  
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